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Abstract—This review paper is to give a full picture of fault
detection and diagnosis (FDD) in complex systems from the per-
spective of data processing. As a matter of fact, an FDD system is
a data-processing system on the basis of information redundancy,
in which the data and human’s understanding of the data are
two fundamental elements. Human’s understanding may be an
explicit input–output model representing the relationship among
the system’s variables. It may also be represented as knowledge
implicitly (e.g., the connection weights of a neural network).
Therefore, FDD is done through some kind of modeling, signal
processing, and intelligence computation. In this paper, a variety
of FDD techniques are reviewed within the unified data-processing
framework to give a full picture of FDD and achieve a new level
of understanding. According to the types of data and how the
data are processed, the FDD methods are classified into three
categories: model-based online data-driven methods, signal-based
methods, and knowledge-based history data-driven methods. An
outlook to the possible evolution of FDD in industrial automation,
including the hybrid FDD and the emerging networked FDD, are
also presented to reveal the future development direction in this
field.

Index Terms—Complex systems, data-driven, fault detec-
tion and diagnosis (FDD), knowledge-based, model-based,
signal-based.

I. INTRODUCTION

I NDUSTRIAL systems have been becoming more complex
and expensive with less tolerance for performance degra-

dation, productivity decrease, and safety hazards, such as wind
farms [28], [98], aircraft engines [20], [53], petrochemical pro-
duction [89], and metallurgical production [91]. This leads to
an ever increasing requirement on reliability and safety of con-
trol systems subjected to faults and failures. With the advent of
computerized control, communication networks, and informa-
tion techniques, a huge volume of operation data relating to the
process’s conditions and status have been collected, which not
only makes new fault detection and diagnosis (FDD) methods
possible, but also brings challenges.
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As an effective means to ensure the reliability and safety of
industrial systems and reduce the risk of unplanned breakdowns,
FDD has been the subject of interest in control and automation
community [13], [42], [51], [52] and finds its success in many
engineering areas. FDD studies how to detect the occurrence
of a failure as early as possible and how to identify the location
and type of the fault as accurately as possible. In the early years,
a primitive FDD was simply a limit checker of measurements.
Unfortunately, the simple over-threshold checking method be-
comes invalid as the system complexity increases. Analytical
model-based fault-detection methods were proposed to over-
come difficulties raised with limit checking. With the mature
of state-space modeling and system identification techniques
in the 1970s, model-based FDD has become the main stream
of research since the 1980s. The model-based method involves
rigorous development of process models either derived from
first principles or identified from measured data. The represen-
tative work of model-based FDD includes parameter identifica-
tion method, observer-based method, and parity space method.
At nearly the same period, the signal-based FDD method was
developed due to the significant improvement of digital signal-
processing techniques. One of the most successful applications
of signal-based FDD is the motor current signature analysis
(MCSA) for electric motors and generators.
Recently, with the rapid development of smart instruments,

digital communication networks and computer techniques, dis-
tributed control systems (DCSs) have been widely deployed in
advanced industrial systems and provided the ability to collect
and store a huge amount of process data. The emerging DCSs
and networked control systems (NCSs) make the data acquisi-
tion much easier. The amount of the collected data, however, is
too much to be fully and effectively utilized by most existing
FDD methods. As a result, “large volumes of data with very
little information” is a quite common phenomenon in today’s
industrial automation. For instance, in the condition monitoring
of wind farms, there are a number of various databases with
data and statistics, but it is difficult to get an overall picture of
the relationship between failures and data [81]. Enabled by the
ever increasing computational power governed by Moore’s law,
many artificial intelligence (AI) techniques in computer science
have been introduced to FDD to deal with the huge amount of
data and extract useful information (or termed by knowledge)
from data [8], [63]. Particularly, in the 1990s, machine learning
(sometimes referred to as soft computing or computing intelli-
gence [55], [97]) was developed, which mimics human’s abili-
ties of logic reasoning by numeric computing and connections,
rather than by the traditional logic algebra developed in the
1950s. Typical examples of soft computing are neural networks
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and fuzzy logics [55]. The introduction of computing intelli-
gence develops a new trend of knowledge-based FDD methods
[86].
The new trend in FDD is to integrate various strategies to

form a hierarchical structure with a mixture of various homoge-
neous and/or heterogeneous FDD methods. Consequently, the
study of FDD has been a multidisciplinary field involving con-
trol engineering, signal processing, and artificial intelligence
(AI). The diversity of the FDD methods makes it difficult for an
engineer to master all of the techniques and trends in different
fields. In particular, it seems that results from AI play, and will
continue to play, an important role in FDD. It is necessary to
find their common features and difference and build a system-
atic view to represent the new trends in FDD under a unified
framework.
Nevertheless, the fact is that any FDD system is a system of

data processing on the basis of information redundancy [14],
[35], in which the data itself and the understanding of the data
are two fundamental elements. Different FDD strategies vary
at how the data are understood and how the information be-
hind the data is exploited. In this survey, with the purpose of
providing a full picture of FDD including these signal-based,
model-based, and knowledge-based approaches, we study these
strategies from the viewpoint of how the data are processed
for FDD. This is a systematic and comparative study of var-
ious FDD strategies by examining the relationship among in-
formation, data, model, signal, and knowledge under the data-
driven framework. We attempt to present a data-driven perspec-
tive showing how these different methods relate to and differ
from each other.
The remainder of this paper is organized as follows. As a

preparation, Section II examines the relationship among data,
models, signals, and knowledge in FDD. Section III reviews
the model-based online-data-driven FDD followed by signal-
based FDD in Section IV. In Section V, knowledge-based his-
tory-data-driven FDD is investigated. Section VI presents an
outlook of the possible evolution of FDD in advanced industrial
automation. We end the paper with a conclusion in Section VII.

II. CATEGORIES OF FDD

Here, we start from the viewpoint of information redundancy
and data-driven FDD, where an FDD always makes use of data
and models either explicitly or implicitly. We then classify FDD
into three categories, investigate the core concepts in these cat-
egories, and study their relationship.
In industrial automation, FDD is used to monitor the behavior

of a process that is usually described as a dynamic system. Here,
a dynamic system is a process producing outputs from inputs, in
which variables of different kinds interact, and the output vari-
ables depend on the present and past values of the input vari-
ables. From the viewpoint of information theory, the correlation
and dependences among these variables are information redun-
dancy, which is the basis of all FDD. A traditional approach
to have information redundancy is physical redundancy that is
the duplication of hardware components (e.g., controllers and
sensors). Another form of redundancy is analytical redundancy,

in which the correlation among the related variables are repre-
sented either explicitly by a mathematic model or hidden behind
the huge amount of data in an implicit form.
Since most FDD algorithms nowadays are carried out by dig-

ital processors in the discrete-time domain on the basis of sam-
pled data, only discrete systems are included herein. Consider
a system with inputs (denoted by )
and outputs (denoted by ), where
is the discrete time, the relationship between and is
written as a function

(1)

where and are polynomial with respect to the back-
ward shift operator , is the systems parameters.
In (1), the known function represents the analytical re-

dundancy explicitly. When the dynamic system gets more com-
plex, it becomes impossible to have such an explicit function.
Defining the measurements of variables as signal or data and re-
ferring the implicit dependency behind data as knowledge, we
can tell if the dynamic system has faults by checking consistence
between the data and knowledge. The data should match with
the expected knowledge if the system works in good condition
as expected. In this sense, knowledge and data are redundant to
some extent.
In the context of information redundancy, an analytical FDD

is a data (signal) processing with one search engine to check
information redundancy between the data and explicit model or
implicit knowledge. Here, redundancy checking means to check
the consistency of the data against a model or knowledge or to
directly check the consistence among the data themselves. In
this sense, FDD methods are always data-driven on the base of
model or knowledge.
In this paper, we investigate the analytic FDD methods

from the viewpoint of how the data are processed for FDD.
Depending on how the data and the dependency are de-
ployed, FDD methods can be classified into three categories,
namely model-based (online-data-driven) FDD, signal-based
(data-driven) FDD, and knowledge-based (history-data-driven)
FDD. This concept is illustrated in Fig. 1 schematically.
The bottom of Fig. 1 depicts the model-based FDD, in which

only a small amount of online data is used to detect and diagnose
faults. A mathematic model with parameter has been avail-
able from first principles or identified through system identifica-
tion techniques. The data of system input and output are then fed
into the data-processing engine that generates residuals by com-
paring the measured data and model’s predictions. A residual
classifier or classifier is next employed to check if there is
a fault and decide what fault it could be. A good model-based
FDD ideally has residuals sensitive only to system faults but not
to disturbances or deviations in system inputs (such as motor
power supply imbalance or motor load variations).
The block diagram of the signal-based FDD is shown in the

middle of Fig. 1. The information redundancy in signal-based
FDD methods is the relationship between faults and the signal
patterns. Since the faults within the system usually have direct
influences on output variable , it is straightforward that the
signal used in most signal-based FDD methods is the sampled
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Fig. 1. Data flow in FDD.

output variable and there is no need for an input-output model
of the dynamic system. This is beneficial for complex indus-
trial process or machine systems where accurate input-output
models are usually unavailable and/or their parameters are hard
to estimate.
When a process is too complex to bemodeled analytically and

the signal analysis does not yield an unambiguous diagnosis, a
sophistic FDD approach aided by expert systems or AI has to
be used, which usually involves a huge amount of history data.
This leads to the knowledge-based (historic) data-driven FDD,
of which the block diagram is shown at the top of Fig. 1. In a
narrow sense, the knowledge-based FDD is often referred to as
“data-driven” FDD, since it is very common in a complex indus-
trial process that only a huge amount of data is provided and the
explicit models or signal patterns of a system are not available
straightforward. Such a data-driven FDD is based on the implicit
knowledge mined from the huge amount of history data through
some intelligent training or machine learning methods. Once the
knowledge is developed from the history data to form a knowl-
edge-base (KB) implicitly representing the dependency of the
system’s variables, the consistency between the recent data and
the KB is checked and a classifier follows to make final deci-
sion.
In signal-based FDD, the relationship between output

signal and faults are built up from human’s a priori under-
standing of the system. On the other hand, knowledge-based
FDD discovers the dependency from a huge amount of data
autonomously. This is a distinguishing character of knowl-
edge-based FDD different from signal-based FDD. The
measured signal possess some features in the time domain
and/or frequency domain, which can, in many cases, be mean,
variance, frequency, magnitude, and phase. Most importantly,
these features are linked to the faults. Different faults result in
different combinations of these features, and the combination
of features is referred to as signal pattern or signal signature.
Obviously, different faults have related signals to show different
patterns. As a result, the basic data processing in signal-based
FDD is to extract the features from the signal to get their
patterns and compare the signal pattern with known pattern to
detect and diagnose faults. Depending on the signal-processing
techniques (statistical or nonstatistical) and the patterns used

in FDD, the data required for signal-based FDD can be online
data or history data. In most cases, the data size in signal-based
FDD is larger than the model-based method, but much smaller
than in the knowledge-based method.
Fig. 1 also shows that a FDD has three elements: 1) a rep-

resentation of information redundancy, which can be explicit
mathematic models, known signal patterns, or implicit KB de-
rived from data; 2) data collected during operation which will
be checked against the information redundancy; and 3) a consis-
tence-check engine with classifiers. The consistence-check en-
gine in turn depends on the type of data available and the form
of information redundancy. From this point of view, we classify
the data-driven FDDs into these three categories according to
the type of data and form of information redundancy.
In Sections III–V, these three categories of data-driven FDD

techniques will be reviewed, respectively.

III. MODEL-BASED ONLINE DATA DRIVEN FDD

The model-based FDD methods have been fruitful and, for
the sake of analysis, the input–output model of system (1)
is transformed into a general state-space model

(2)

where subscript denotes time index, is an -dimen-
sional state vector, is the unknown input denoting modelling
errors, measurement noises, and external disturbances, and
represents possible faults to be detected.
Since faults usually cause changes in state variable , in

model parameters , and/or have output derivate from ex-
pected values, one can check these changes/derivations to tell
if the system has a fault. Based on the explicit model (2),
the model-based FDD methods generate output estimates ,
parameter estimates , and/or state estimates from the data
pair . Checking these estimates with respect to their
expected nominal values, a residual is generated and clas-
sified. Accordingly, model-based FDD consists of three main
branches: 1) parameter estimation method resting from system
identification [51]; 2) parity relation approach [14], [42]; and
3) observer/filter-based approach [34].
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A. Parameter Estimation for FDD

In most applications, the parameters are unmeasurable, but
they can be determinedwith parameter estimationmethods from
measured input/output data . The parameter estimation
methods have been extensively studied in system identification
[64], and its application to FDD was first described by [51] as
follows. The model’s parameters are related to phys-
ically defined process coefficients (like resistance, stiffness,
and loads). Faults within the system will have a change in
.When is estimated, and, in turn, is computed by solving

and fault can be detected and diagnosed. Hence,
the FDD problem turns into parameter estimation, which can
be solved by least-square error (LSE) and its derived methods
[64], such as instrumental variables and (recursive) subspace
methods [18]. Various parameter-estimation methods for FDD
are reviewed in [51] and [52]. Regardless of the parameter-es-
timation methods employed, the logics of FDD are the same as
those suggested in [51].
A high-gain observer-based online parameter-estimation

method was recently proposed in [40] for a system subject to
bounded process and measurement noises. In this approach,
the parameter changes are modeled as an unknown disturbance

. A high gain observer is then applied to estimate , and
a linear square estimation method is applied to estimate the
parameter changes from .
The main advantages of parameter identification-based

method are that the fault diagnosis is very straightforward if the
model parameter has a one-to-one mapping with the physical
coefficients. For example, function is an identity matrix
or the model is a gray-box model. Detecting sensor/actuator
faults by parameter identification may be complicated, as
sensor/actuator faults may influence the input/output in the
same way as the process (parameter) faults.

B. Observers and Filters for FDD

The Kalman filter and Luenberger observer based methods
have been widely accepted for state estimation and residual gen-
eration [13], [75]. For illustration purposes, we consider system
in (2) as a linear state-state space model

(3)

For nonlinear systems, the basic steps and concepts are similar,
but with nonlinear observer or extended Kalman filter rather
than linear ones. The observer (filter) for system (3) is

(4)

where and are the estimates of the state and output, respec-
tively, and is the observer gain to be designed. The diagram
of the observer is illustrated in Fig. 2(a). Let denote the state
estimation error and denote the output esti-
mation error , the dynamics of the observer (4)
are governed by

(5)

Fig. 2. (a) Static observer and (b) Dynamic observer for FDD.

Applying the -transform to (5), the relationship from , to
residual in the -domain is

(6)

where the transfer function matrices are

(7)

Equation (6) suggests that the residual is related to both the
faults and disturbances. The heart of the observer-based FDD
is to make sensitive to faults but insensitive (robust) to
disturbance . As one of the dominant FDD approaches, the
de-coupling approach has been developed in last two decades
[13], in which the disturbances and model uncertainties are
treated as unknown inputs and de-coupled from residuals.
Unknown input observers (UIOs) were first employed in [95],
where the insensitivity to disturbances was achieved indirectly
by making the state-estimation error de-coupled from . The
direct UIO decoupling from was proposed in [69] and
[95] by using eigenstructure assignment. However, the perfect
de-coupling may not be possible, when required sufficient
condition is not met [13]. An approximate de-coupling should
be taken, where the residual is not perfectly de-coupled from
disturbances, but has a low sensitivity to disturbances and
high sensitivity to faults. It becomes an optimization problem
and has been studied both in the time and frequency domains.
Some researchers applied multi-objective optimization to
solve this problem [12], [33]. To address the nonlinearity of
complex systems, sliding-mode observers were developed for
fault detection in [29]. optimization and linear matrix
inequality (LMI) for robust residual generation have received
more attention recently [54].
Note that the gain of the observer (4) is a numerical ma-

trix which simply amplifies by when feeding back the ob-
served information to update the observer. Since the frequency
response of the feedback path is a constant value over all
frequencies, the feedback gain does not change the frequency
shape of selectively. This kind of observer is termed as static
observer, of which zeros are invariant [21]. In order to improve
the observer’s frequency response, the concept of dynamic ob-
serverwas developed, and a joint pole-zero assignment was pro-
posed in [21], where the numerical gain matrix is replaced
with a dynamic system

(8)

Fig. 2(b) illustrates the structure of the dynamic observer. By
introducing a dynamic system into the observer’s feedback path,
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the observer has some desired ability of frequency shaping to
improve the residual’s robustness against the disturbances but
keep the information of faults.
Another branch of observer-based FDD is fault estimation,

including proportional integral observer [38], [85], adaptive ob-
server [92], and sliding-mode observer [88]. They were devel-
oped for fault diagnosis and fault-tolerance control and have the
ability to estimate the actuator/sensor faults. For a system sub-
jected to input noises and sensor noises, it is more challenging to
estimate the fault. Another approach is the descriptor observer
[37], [39], where derivative gain is tuned to attenuate sensor
noises and high-gain proportional gains to attenuate process
noises.

C. Parity Equations for FDD

Another main approach in model-based FDD is parity equa-
tions. The data process in parity methods is to check the parity
(consistency) of the models with sensor output and known in-
puts. The idea of parity space approaches can be explained as
follows [14], [52]. Consider the state-space model (3), after ob-
serving pairs of input–output data , ,
the input–output relationship can be rearranged into a compact
form

(9)

where and are defined as [52]. Left-multiplying (9) with a
vector gives a scalar equation

(10)

When the state variables is eliminated, (10) becomes a
parity equation, and the residual is generated as

(11)

Eliminating the state variables requires , which
can be solved if the system is observable. Under healthy condi-
tions, the residual of the parity equations is zero. Dynamic
parity relations were studied in [14] and significantly developed
in [42].
There have been many survey papers for model-based FDD

[34], [35], [51], [89] by Isermann, Patton, Frank, and Ding, re-
spectively. Recent books like [13] and [52] provide a compre-
hensive overview of model-based FDD, which are good refer-
ences for further readings.

IV. SIGNAL-BASED DATA-DRIVEN FDD

Signal-based FDD is based on analysis of the output signals
and does not involves an explicit input-output model

of the target system. As shown in (2), the system output depends
on the system parameters . Since a fault within the system usu-
ally makes deviate from its nominal value, the system’s output
will change accordingly. More specifically, the pattern and fea-
tures of the system output signal usually have correlation with
faults. Such correlation is the basis of signal-based FDD. Thus,
one can monitor and analyze the output signals and find their
feature patterns and links to faults, which will provide useful
indication of the faults and their types.

Typical signals include vibration, speed, force, current, and
magnetic flux density. Even though thermal and other signals
have been utilized in FDD, signal-based FDD methods are par-
ticularly interesting for motors and rotary machines and mainly
focuses on electronic signals and vibrations. The overwhelming
majority of motor FDD systems use motor measurements, such
as motor currents, negative sequence currents, and/or vibration
levels.
Features of the monitored signals are extracted to analyze its

patterns, which can be in time and/or frequency domains. Ex-
amples of features are signal means, variance, trends, instanta-
neous power fast Fourier transform (FFT), or the spectra in a
frequency band of interest. Typical signal analysis techniques
include FFT, spectral estimation, wavelet transform [5], and se-
quence analysis [71]. Moreover, parametric signal models (e.g.,
an ARMA model) can be used [52], which allow the main fre-
quencies and their amplitudes to be directly estimated. This ap-
proach is especially sensitive to small frequency changes.
Depending on the types of signal patterns and signal anal-

ysis techniques, the signal-based FDD methods can be classi-
fied into three categories: time-domain, frequency-domain, and
joint-time-frequency methods.

A. Time-Domain Signal-Based FDD

It is straightforward to regard a signal as a time-domain wave-
form and a signal with many characteristics in the time domain,
such as period, peak, mean, and standard deviation [13]. Higher
order statistics such as root-mean-square (rms), skewness, and
kurtosis and crest factor have been used as well [12].
Cross-correlation analysis is a widely accepted technique in

the time domain for fault detection and classification. The cross-
correlation coefficient provides a dimen-
sionless measurement of linear dependency between two signals
and . For fault detection and classification, a set of baseline

signals in various known conditions are first collected as ,
and the correlation analysis between the signal to be moni-
tored and the baseline signals are carried out. The resulting
correlation coefficient indicates the possibility of the present
condition is. If approaches 1, it is highly possible that the
system is in the condition corresponding to . If is around
zero, the system is not in the condition associated with .
The negative log-likelihood value is recently proposed for

vibration signal-based FDD of mechanic systems [87]. The
Weibull negative log-likelihood value (Wnl) and the normal
negative log-likelihood value (Nnl) of the time-domain signals
are statistical features, which represents the likelihood of the
signal’s distribution. Combined with neural network classifier,
the introduction of Wnl and Nnl benefits fewer input features to
neural network and was demonstrated the potential suitability
for detecting bearing faults [87].
Most signal-based FDD treat the signal in one-dimensional

(1-D) time domain. Recently, an interesting time signal to a 2-D
image translation approach is demonstrated in [24]. As illus-
trated in Fig. 3, the magnitudes of data samples in a time se-
ries are treated as pixel intensity, and the data are rearranged
into an gray image . The features of the
image are extracted through a scale-invariant feature transform
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Fig. 3. Example of a 16-k vibration signal translated into a 128 128 gray image [24].

(SIFT) is applied to the image to extract the 2-D local features,
which are correlated to faulty symptoms. Therefore, faults can
be detected and diagnosed by using advanced image processing
and pattern recognition algorithms.

B. Frequency-Domain Signal-Based FDD

Signals related to many mechanical and electrical faults con-
tain feature frequency components and different faults may re-
sult in different signal pattern in frequency domain. In most
cases, these frequencies can be determined from a priori knowl-
edge or known parameters of the target system, e.g., the number
of poles of a motor. The use of the frequency analysis of vibra-
tion and current signals has been heavily researched to detect
bearing, stator, rotor, and eccentricity faults.
Frequency-domain analysis begins by converting a time-do-

main waveform into its frequency-domain equivalence and the
discrete Fourier transformation (DFT) is the most common
method used for online condition monitoring. Since the pattern
of the dominant frequency components is likely to be the
signature of fault, when the frequency spectrum is available,
peak detection can be used to identify the dominant frequen-
cies, and envelope analysis [17] can be utilized to describe the
patterns including the spacing of sidebands and the presence
of harmonics. Silva et al. [17] obtained the envelope by using
sampled positive peaks of the stator current and extracted fault
signature from the envelope using a statistical clustering tech-
nique called Gaussian mixture model (GMM). The signature
was then fed to a maximum-likelihood Bayesian classifier for
diagnosis, which was found to be 99% accurate in detecting a
single turn short under 50% rated load.
As one of the most successful signal-based FDDs, the motor

current signature analysis (MCSA) has been widely used in
modern industrial drive systems [71]. Recent development in
MCSA is motor fault detection under unbalanced conditions
[4], [16] and condition monitoring of wind generators, such as
doubly-fed induction generator (DFIG) [28]. In [2], an adaptive
algorithm for fault detection in DFIG was proposed for FDD
under dynamic conditions. The work in [4] and [16] studied the
multiple reference frames theory that was shown to be immune
to voltage unbalances or nonstationary conditions. In [28], the
experiment results validated the theory analysis that the current

spectrum for a 30-kW DFIG with one broken bar showing the
characteristic 1 2 s broken bar sidebands around the 50-Hz
peak. This frequency pattern can be employed to detection
broken bar faults in wind generators.

C. Joint Time-Frequency-Domain Signal-Based FDD

Individual features in either the time or frequency domains
are generally unable to extract all underlying signal informa-
tion. Time-frequency analysis combines both the time-domain
waveform and the corresponding frequency spectrum. This en-
ables the examination of transient features, such as impacts and
fault events, as well the ability to monitor frequency content
over time [90].
The short-time Fourier transform (STFT) is a common

technique, where the signal is divided up into short-time
segments, and then a FFT is applied to each window. The
Wigner–Ville distribution (WVD) overcomes this resolution
limitation in STFT, but it suffers from interference terms
forced by the transform itself. Improved transforms, such as
Choi–Willams distribution, Zao-Atlas-Marks (ZAM) distri-
bution and cone-shaped distribution, have been developed to
further advance time-frequency analysis [79]. In [93], STFT,
wavelet transform and the pseudo-Wigner–Ville distribution
are investigated for condition diagnosis of rotating machinery.
In [3], the stochastic subspace-based identification method was
developed.
The trend in signal-based FDD is moving towards application

of nontraditional computational techniques in the subject areas
such as finite elements and, more recently, wavelet signal pro-
cessing that has been receiving much attention [5], [15]. For the
purpose of analysis, consider 1-D continuous wavelet transform
(CWT) of signal given by

where is the scaling factor and is the basis
wavelet function. Different from STFT, the wavelet transform
uses scalable basis function and variable size windows,
allowing for the acquisition of multiscale resolutions [20]. The
discrete wavelet transform (DWT) has also received praise for
its computation efficiency and ability to reduce noise in raw
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signals [12]. DWT has been performed on the vibration and
motor current signals and various basis wavelet functions have
been proposed for FDD, such as Gaussian-enveloped oscilla-
tion wavelet [15], Daubechies family, Symlets family [9], and
B-spline (FBS) wavelets that enable an efficient filtering in
the region neighboring the main frequency, as well as enable a
high level of detail in the time–frequency maps [45]. Discrete
wavelet packet transform (DWPT) was proposed to enhance
the power and the flexibility of the DWT [9]. Various adaptive
methods have been proposed for the selection of optimal basis
wavelets [9], [99].
Although it has been demonstrated that these three signal-

based approaches are able to work individually to detection and
diagnose faults, there have been many reports in literature that
combine these methods together. For instance, in [5] and [93],
the wavelet analysis and MCSA are integrated. More recent
development of the hybrid FDD methods will be discussed in
Section VI-B.

V. KNOWLEDGE-BASED HISTORIC DATA-DRIVEN FDD

For those systems which are too complicated to have an
explicit system model or signal symptoms, a learn-by-example
mechanism is desirable to automate FDD. In contrast to the
model/signal-based FDDwhich requires a priori knownmodels
or signal patterns, the knowledge-based FDD starts from where
only a large amount of historic data is available. Enabled by
the advanced artificial intelligence, the knowledge-based FDD
learns from empirical data to “discover” the underlying knowl-
edge that represents the information redundancy among the
system’s variables. The intelligent learning from a vast volume
of data is the definition feature distinguishing knowledge-based
FDD frommodel-based and signal-based ones, as the latter only
require a small amount of data for redundancy checking rather
than redundancy learning. Due to this fact, knowledge-based
FDD has been commonly referred to as “data-driven” FDD,
and this name has been widely accepted. However, the term
“data-driven” is confusing and less rigorous, as every FDD
methods, including model-based and signal-based ones, is
a data-processing procedure driven by data. In this paper,
it is more scientific to use the full name knowledge-based
historic-data-driven FDD or shortly knowledge-based FDD.
The knowledge-based FDD has become a hot interdiscipli-

nary research topic in the last decade, due to the rapid devel-
opment of machine learning (ML) in artificial intelligence (AI)
since the 1990s. It can be seen that these newly proposed in-
telligent FDD methods are always lighted by new techniques
developed in AI. Because of the close links between knowl-
edge-based FDD and AI, in order to give reader a full picture
of the knowledge-based FDD and its trend, it is helpful for
such a survey paper to first review the links between AI and
FDD briefly followed by detailed discussion on various knowl-
edge-based FDD techniques.

A. AI and Machine Learning in FDD

The knowledge in FDD can be either quantitative or qual-
itative and is usually organized as a knowledge-base (KB).
The KB can be in very different forms, for example, the fault
tree is a typical qualitative KB, and a neural network with

Fig. 4. Knowledge-based history-data driven FDD.

weighted links forms a quantitative KB. On the other hand, as
a knowledge development and management method, AI has
adopted two main paradigms: symbolic intelligence and con-
nectionist intelligence. The first is based on symbolic algebra
to manipulate symbols. The second is also referred to as com-
putational intelligence, as it is based on computation-intensive
machine learning techniques. These two paradigms are asso-
ciated to qualitative knowledge and quantitative knowledge,
respectively.
Consequently, it is intuitive to group the knowledge-based

FDD into two groups (as shown in Fig. 4): qualitative methods
on the basis of symbolic intelligence and quantitative methods
on the basis of machine learning intelligence.
The qualitative methods include three subcategories: fault

tree (FT), signed diagraph (SDG), and expert system (ES). FT
originally developed at Bell Lab in the 1960s is a logic cause–ef-
fect tree that propagates primary events (faults) from bottom to
the top level events (symptoms). A recent application of FTs
in FDD was reported in [57] for reliability analysis and fault
diagnosis. SGD is a graph with directed arcs leading from a
“cause” node to “effect” nodes, and these arcs are given a pos-
itive or negative sign. SDG have been the most widely used
form of qualitative knowledge in FDD. ES is generally a tai-
lored system containing deep, but in a narrow-domain expertise
of a system. The expert system indeed is a rule-based system
presenting human’s expertise in a set of rules. Initial attempts at
the application of expert systems to fault diagnosis can be found
in [73]. In [100], a methodology was presented for formulating
diagnostic rules from the knowledge of system structures and
component functions. A fuzzy expert system was proposed in
[30], and interested readers should refer to [61].
These qualitative FDD are based on the traditional symbolic

AI that was first developed in the 1950–1960s and revived in
the 1980s due to the success application of experts system in
condition monitoring. Nowadays, enabled by the exponentially
increasing computation power, computational intelligence (also
called machine learning or “soft computing” [55]) has become
the most attractive AI techniques. As theML is an effective way
to obtain knowledge from a huge amount of empirical data at the
cost of intensive computation, it is straightforward to apply ML
for detecting and diagnosing faults from data without the need
for explicit model.
Fig. 4 shows a schematic classification of the quantitative

knowledge-based FDD from the viewpoint of machine learning.
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It is noticed that, in these quantitative knowledge-based FDD,
the history data is first transformed by ML into knowledge. This
procedure is known as training or learning. Since the domi-
nant machine learning techniques used in FDD are unsuper-
vised learning and supervised learning, we only discuss these
two methods in this paper.

B. Supervised Learning for FDD

In supervised learning FDD, the data is first classified and la-
beled with tags that indicate the system’s conditions and symp-
toms, such as healthy, faulty and the type of faults. The la-
bels are also known to the machine learner. Here, by ‘machine
learner’ wemean themachine learning algorithms. Themachine
learner’s task is to search for patterns and rules representing the
information redundancy and relationship between data patterns
and faults. Typical machine learner in knowledge-based FDD
are neural nework, fuzzy logics, and PCA, etc.
1) Neural Networks (NNs): NNs are one of most well-es-

tablished machine learning techniques for monitoring complex
nonlinear processes. An NN is a set of nodes linked by connec-
tions with weights representing the “strength” of those connec-
tions. The nodes are organized into layers and data is propagated
through successive layers. The input-output relationship of th
node at the th layer is a nonlinear function

(12)

where is the output of the th node at the th layer, is
the connection weight from the th node at the th layer
to the th node at the th layer, is the number of inputs
(usually equal to the number of preceding nodes), and is
the node’s parameter. It can be seen that the overall function
of NNs is a series of superposition and composite function of

. The most common is the sigmoid transfer func-
tion or a (Gaussian) radial basis function

.
In FDD, the input to the NN is the history data set and the final

output is an indication of the target system’s status (healthy or
faulty). Given the dimension of the data set is and the number
of possible type of faults is , the relationship can be expressed
by a -to- function mapping from -di-
mensional data to -dimensional health/fault status. Due
to the complexity of the target system, function is usually very
complicated and highly nonlinear, and getting an analytic form
of is extremely difficult or impossible. Since NNs have shown
its good ability to approximate complex nonlinear functions, it
is feasible and straightforward to use an NN to approximate .
Themost important stage inNN-based FDD is training, in which
the connection weights and node’s parameters are ad-
justed by some training algorithm to have the NN approximate
. More specifically, the training is an optimization process to

minimize the approximation error between NN and the desired
function . The most popular supervised learning strategy in
NNs is back-propagation algorithm [55], [67].
Due to its powerful nonlinear function approximation and

adaptive learning capabilities, NNs have drawn great attention

in FDD. In chemical engineering, one pilot study of neural net-
works for FDD was reported in [49]. The NN method was later
extended to utilize dynamic process data [86].
Most of the work on improvement of NNs for FDD is based

on the selection and modification of function . References
[56] and [72] suggested the use of a radial basis function for
FDD. In [59], the radial function was extended to Gaussian
functions and the hidden node problem was addressed for large-
scale fault diagnosis.
Different network architectures have also been proposed for

FDD [44]. NNs are also integrated with other machine learning
algorithms to improve the fault diagnosis performance. A very
common one is the combination of fuzzy logics with neural net-
works. In [55], a typical fuzzy-neural network was proposed and
a number of successful applications can be found in [11].
2) Fuzzy Logic (FZ): FZ is a means of partitioning a feature

space into fuzzy classes and using fuzzy rules for reasoning.
In contrast to NNs in which the knowledge is implicitly repre-
sented by a network of connections implicitly, FZ has the ad-
vantages of describing human knowledge in a straightforward
and linguistic way [55]. Due to its linguistic features, FZ has
attracted considerable interests in the literature. Similar to the
fault tree and expert systems, fuzzy logics adopt the if-then rea-
soning rule, which is a common and straightforward form of
human knowledge. However, FZ stands out at its definition fea-
ture of using membership functions to describe the uncertainties
and possibilities of events and rules [55]. As a result, FZ is able
to easily incorporate uncertainties and possibilities, which are
universal in data observation and decision making, into the di-
agnosis system. For example, a nonlinear fuzzy model [1] with
transparent inner structure was used for the generation of six
different symptoms in electro-pneumatic valve.
Due to the linguistic representation of human knowledge, FZ

has shown its success in FDD [50]. A FZ system was developed
in [80] for space monitoring and fault detection supported by the
European Space Agency (ESA). In [76], a fuzzy spectral and
spatial classifier was used for feature extraction. Fuzzy FDD
was applied to induction motors, where the fuzzy bases were
extracted from the current analysis of the fault modes [103]. In
[65] a fuzzy-based classifier was developed to estimate types of
actuator failure in aircraft, and a genetic algorithm was adopted
to achieve an optimal fuzzy rule set for the classifier.
3) Principal Component Analysis (PCA) and Partial Least

Squares (PLS): PCA and PLS are two typical multivariate sta-
tistical approaches in FDD [66]. Successful applications have
been extensively reported in the literature. The first attempt of
applying PCA in FDD can be found in [27], where overviews
of using PCA and PLS in FDD were given. This method was
extended to multiway PCA [74]. In order to handle nonlinearity
in batch processes, a nonlinear PCA method was proposed
in [25]. An integral statistical methodology combining PCA
and discriminate analysis techniques was developed in [78]. In
[27], PCA was discussed from a geometric point of view, and
a methodology that analyzed fault subspace for process and
sensor fault detection was addressed.
A major limitation of conventional PCA monitoring is that

the PCA model is time-invariant, while most real processes are
time-varying. Hence, the PCAmodel should also be recursively
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updated [101]. An adaptive monitoring approach using recur-
sive PLS was presented in [94].
4) Other Supervised Methods: Other supervised methods

include support vector machine (SVM), Bayesian classifier,
and rough set. Recently, there have been a great deal of papers
showing the application of SVM to FDD [70], including di-
agnosis of the bars in the machine [32]. In [60], a single-class
SVM was developed for fault detection. In [46], the Bayes
decision theory and Bayes minimum error classifier were ap-
plied to FDD. In [23], a two-step fuzzy/Bayesian formulation
for changing point detection in time series was proposed and
applied for incipient fault detection in dynamical systems.
On decision tree analysis, a spatial decision tree was recently
developed for movement monitoring [43]. A recent interesting
study is the application of a hidden Markov model and param-
eter estimation techniques for condition monitoring of rotary
machines [41].

C. Unsupervised Learning for FDD

The distinction between supervised and unsupervised
learning is whether the training data provided for the “machine
learner” has been labeled. Unsupervised learners are provided
with the training data without classification tags. The unsuper-
vised learner has to develop and select classification tags on its
own.
Unsupervised algorithms usually seek out similarity between

pieces of data in order to determine whether they can be charac-
terized as forming a group (termed “cluster”). Thus, this process
is also referred to as “clustering.” In FDD, these different groups
usually associate with different faults, and, ideally, each group is
expected to have a one-to-one mapping to its own fault. How-
ever, the unsupervised algorithm does not guarantee this and
may converge to solutions that are not optimal. For example,
the selection of the number of clusters has been a potential dif-
ficult problem.
K-means is one of the best known andmost popular clustering

algorithms, which has found application to FDD [58]. Self-orga-
nizing neural networks such as ART network [7] have also been
extensively used in fault diagnosis [96]. In addition, in [10] and
[16], the integration of wavelets with ART networks was inves-
tigated for the development of diagnostic systems.

VI. HYBRID AND NETWORKED FDD IN

INDUSTRIAL AUTOMATION

As these model-based, signal-based, and knowledge-based
FDD techniques have their pros and cons, it is a trend that these
three complementary techniques are usually integrated together
to achieve a better performance. This is particularly true when
the industrial processes have evolved from a set of loosely con-
nected individual systems into amultitier networked automation
system.

A. Multi-Tier FDD in Industrial Automation

In the fast changing industry automation, a large-scale com-
plex automation system comprises three layers, and the data
flows from bottom to top to drive different FDD algorithms. As
illustrated in Fig. 5, these layers are given here.

Fig. 5. Data flow and FDD in industrial automation.

1) Field control system (FCS): the field devices such as con-
trollers, actuators and sensors are connected by correspon-
dent field buses to form various control loops. Raw data
is first sampled here and sent up for controlling and mon-
itoring. Typical FCS are programmable logic controllers
(PLC) and distributed control systems (DCS).

2) Process management system (PMS): the fundamental of
this layer is a supervisory control and data acquisition
(SCADA) system to collect and analyze the data dis-
tributed in FCSs. The safety and reliability are usually
monitored at this layer, and appropriate supervisory con-
trol decisions and actions are taken to keep the process in
a working state.

3) Business management system (BMS): the top layer usually
consists of enterprise resource planning (ERP) system and
maintenance management system.

A large-scale industrial system is a networked information
system, where the raw data sampled at the lowest device level
flows up to upper layers. Various data acquisition and processing
tasks are carried out at different layers for different purposes.
At the lowest FCS level, online data is processed in real time
for model/signal-based FDD. At the middle PMS layer, a huge
amount of online data are collected and stored over a longer
period and processed later in a batch fashion. Depending on
what type of data and how many data are available, the three
FDD approaches reviewed in this paper are slotted into different
layers but with quite a few overlaps.

B. Hybrid FDD

Different methods have their own advantages and dis-
advantages. The model-based FDD is able to detect and
diagnose faults from small amount of online data in real time.
Model-based methods have the ability to detect unknown type
of fault, but it requires an explicit input-output model of the
target system and its performance depends how good the model
is. On the contrary, the signal-based and knowledge-based
methods are supposed not to require an explicit or complete
model of the system. Specifically, the signal-based methods
focus on the analysis of the system’s output signals with less
attention to the dynamics of the input. Its performance may
degrade when the system works in an unknown or unbalanced
condition, while as the knowledge-based methods rely on the
huge amount of high dimensional history data and are paid at
the highest computational costs. As the knowledge-based FDD
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is on the basis of learn-by-example, its performance heavily
relies on training data and is not good at detecting unknown
faults [102].
It is commonly agreed that hybrid schemes would provide

better solutions to a complex system. For instance, in model-
based FDD, parameter identification is usually integrated into
observer and parity space approaches to automate the process
of modeling. In signal-based FDD, the time–frequency wavelet
analysis is integrated with the MCSA in the frequency domain
[5], [93]. In knowledge-based FDD, FZs are usually integrated
into other methods. An ANFIS is a typical example [55], which
sets up a neural network according to fuzzy rules, and the pa-
rameters of fuzzy rules are calibrated by backpropagation.
In particular, as fuzzy logics have easy representation of

knowledge which usually is a drawback of other machine
learning techniques, FZs are integrated into other methods.
Statistical methods like PCA and PLS are also combined with
NNs [44], [77], where PCA/PLS works as a feature extraction
and selection tool to select statistical features and NN works as
a classifier. Supervised and unsupervised methods can also be
integrated. In [68] and [82], the unsupervised neural network
with clustering was proposed. In [83], three techniques (i.e.,
PCA, FZ, and C-means clustering) are integrated to identify
faults and develop operational strategy. The machine-learning
techniques were also integrated into the qualitative methods.
For example, a fuzzy expert system was proposed in [30].
Not only are various FDD techniques within the same cate-

gory combined, but also there is a sign of integrating different
methods crossover categories to overcome the cons of indi-
vidual methods. In [53], various model-based, signal-based,
and knowledge-based FDD are integrated into a distributed
aero-engine health-monitoring system (DAME). In motor
condition monitoring, the signal-based methods are integrated
with model-based or knowledge-based methods, such as fuzzy
logics [103] and neural networks [68]. In [84], combined with
MCSA, fuzzy min-max (FMM) neural network and classifi-
cation and regression tree (CART) were addressed to detect
induction motor’s faults. In [93], time–frequency analysis was
used to extract the features of a rotary machine’s vibration
signal followed by a fuzzy sequential inference and diagnosis
system to isolate the fault. The combination of model-based and
signal-based FDD has shown its ability to detect faults under
unbalanced conditions [36] and have attracted more attention
recently.

C. FDD in Networked Control Systems (NCSS)

With the success of the real-time field bus network designed
for control systems and the rapid development of communica-
tion networks, more non-real-time general networks, such as
Ethernet and WiFi, are introduced into industrial automation,
which opens up a new field of networked control system (NCS)
[48]. In [53], a FDD system, DAME, was developed on grid
computing that is a distributed data processing network. Re-
cently, the emerging wireless sensor actuator networks for ac-
tive flow control [6] and a recent WIDAGATE project [19] also
witness this trend of NCSs. The wireless FDD also finds its
promising application in building automation [62].

However, a most critical and important issue surrounding
the increasing complexity in NCSs is to meet the require-
ments on system reliability. This makes networked FDD
techniques receive more and more attention. It is known
that the contention-based medium access control (MAC) and
packet-exchange communication protocols widely accepted in
NCSs introduce more uncertainties of delays and data losses
into control loops and challenge the existing FDD. In networked
FDD, much of attention has been paid to designing a fault-de-
tection system robust to network-induced delays and packet
losses [47]. A finite-state Markov chain is adopted to represent
the dynamics of the network-induced delays and the control
system is modeled as a Markov jumping system (MJS). Various
FDD and optimization methods were proposed for MJS with
the purpose to make FDD robustness to the network-induced
delays, including Riccati equation methods [31] and linear
matrix inequalities (LMIs) [47]. In [26], a knowledge-based
fuzzy FDD was addressed for NCSs.
It is still an open question how a stochastic communication

network affects the performance of NCSs and how a better
FDD can be tailored for NCSs. As a disciplinary research area
crossing control and communication, it is beneficial to bring
the knowledge of communication networks (e.g., packet delay
estimation and QoS metric) into FDD design, which could be a
potential research direction in networked FDD. A pilot study
is performed in [22], which made use of statistic features of
MAC protocols to estimate the networked-induced delay and
incorporated the delay information into the FDD design.

VII. CONCLUSION

In this paper, we have reviewed various analytic FDD
methods from the perspective of how the data are processed.
From a broad sense of information processing, all FDD systems
are data-/signal-processing procedures with one search engine
to check information redundancy between the data and explicit
model or implicit knowledge. In this context, FDD methods are
always data-driven. Depending on what kind of information
(models, signals, or knowledge) are available and how the
data and information redundancy are utilized, FDD methods
are classified into three categories, namely model-based (on-
line-data-driven) FDD, signal-based (data-driven) FDD, and
knowledge-based (history-data-driven) FDD.
Given the extensive literature on the data-driven FDD, it is

impossible to include all examples of them in a review due to
space constraints. However, this paper sheds light on how the
different methods relate and differ from one another within the
unified framework of data processing. The trend of FDD in mul-
titier industrial automation is also analyzed, and the potential
research directions, such as hybrid methods and FDD in net-
worked control systems, are presented.
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